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A half-space filled with a visco-elasto-plastic material is considered, and it is supposed 
that a pressure impulse is applied to a sphere situated at a certain depth from the free sur- 
face. Relations are obtained describing the plastic deformation of the medium, as well as 
the propagating zone between the compression and relaxation waves. 

The reflection of a stress wave at the free surface is considered, and an analytical in- 
vestigation of the state of the medium behind a reflected irrotational wave is carried out. 

Expressions are obtained describing the change in intensity of a reflected irrotational 
wave, and it is shown that in a certain region the reflected irrotational wave will be a plss 

tic stress wave. 
The problem of the propagation of a spherical wave in an elastic prestressed half-space 

and its reflection from a free surface was studied by several authors [ 1, 21. 
Here we consider an initially unstressed half-space or visco-elaato-plastic material. On 

a sphere 2, of radius R, with center at the point 0 at a depth !I from the free surface, a 

pressure P > k fi acts during a short time interval [O, to], and for t > t 

e *P 

the pressure on 
the sphere u vanishes. At a given instant t > te a portion of the matena , bounded between 
wave surfaces 2, and x,, (irrotational stress and relaxation waves propagating with velo- 

city co = [fh + 2~) /p]% ) will b e in the plastic state, whereas the material between the 
surfaces x, and x,, will be in the elastic state. 

At the time t = h/c, the wave surface x treachea the free 

surface and for t > h/c 

2, in the half-space; t P 

there are two reflected waves x:J and 

ese are the irrotational and equivolu- 

minal waves, propagating with velocities c and c 
respectively (Fig. 1, where P denotes that&e me 

&= k/p)% 
ntm is de- 

formed plastically, and E denotes elastic deformation). 

In this note relations are obtained describing plastic defor- 

mation of the material between the surfaces 2 t aad 2 1 and the 

behavior of the material on the reflected irrotationaf wave X:3. 

Fig. 1 

1. We consider a visco-elasto-plastic material. The rheole 

gical equation of the material has the form [3] 

‘1J t= Aekk6,j + ?F ('ij - 'tip) 

%j - 

tp 

li.i) 

r-p.. 

1 +qq) S&f",. - qt3ijP)fsij- qeiip)= 2&a 

*ti = @if 
- '/*'&~6$j* e{jP=ae,jp,at 

Rere A, tc are Lam6 parameters, q is the coefficient of viscosity, k is the plastic limit, 
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and $ a positive coefficient. The stress 0 ,, and velocity of displacement V, satisfy the 

eqnatron of motion 

3% au, 
--pal=0 az, (1.2) 

Eliminating the qnantities tJ, ~7 from the system (1.1). (1.2) and using spherical coor- 
dinates with center at 0 under the assumptions 

% = ue = 0, uro, = ugo = uv,n= 0, 

we obtain a ayatem of three differential equations, describing the plastic deformation of 
the material between the surfaces zt and x 1 

Here 
a 

a,=$-, 
%I Vt 

c&G-k’ v=---, r=$, t =;c., .=X+2 
=o k 

) e_;, &$ 

are dimensionless quantities. 
The solntlon in the zone of plasticity is represented in the form of a ray expansion 

f i - - oi - etpi - l/&gi - . . . (1.4) 

f1= 01, h=@, fs=v, e-t-r 

The quantities 

u+= [fil, ‘pi= [-$I, gi= pY!-] 

are defined on the surface ct. 

Limiting consideration to quantities of first order in E in (1.4) and using the condition 

of dynamic and kinematic compatiBility [Sl, we obtain values for aJ and 4 3 as follows 

Cl 
08”T 

If5 
w)I--(a-P)rl- o!-p [ 

I- 
’ --g(a- P)r 1 q+-[& c1 27-C 3 1 2 4’ (a3 -- p’) r] ; exl’ I- g (5 - P) rl -- 

v/3 
- (a - p)’ r (42 - P + $) 

The constants C, and C, are determined from the conditions 

(1.5) 

r = rlJ, PO r;= - aoat (1.6) 

One may in tbe same manner determine GJ , o 2, 4 1 
$, and X2 

and +1 The stress and velocity in 

the zone of elasticity between the surfaces will not be calculated; we note, how- 

ever, that they are quantities of order E. 

(t) 2, We consider the change in the intensity o 3 of tbe reflected irrotational wave x 3 

in the process of its propagation in the direction u c3) from the point 0,. The jumps in a,, 

and V, across each wave surface in tbe neighborhood of the reflection point M must satisfy 

a condition of dynamic compatibility [31 

- ’ Ia{jl= P Ivkl ‘kGij + 9 ((“iI ‘j + I’jl ‘i) (2.1) 
Here 

c = co = i for ZrandZ8, c =zz u 1 == [(a -- p) / ?ulx for Z, 
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On the free surface the following condition should be sstisffad: 

utf”‘uj = 0 (2.2) 

The conditions that x, and 2, are irrotational and equivoluminal wave sarfaces take the 
form 

[U*@)] v.(S) = U,(l) 1 . [V,q v $4) =o (NJ] 

Setting 

ni = (cos Q, - sin Q, O), v.(l)= (I, 0, 0) 

vi 
fs) = (- cos 2Q, sin 2Q, 0), v.(~) = (-- ‘COS (Q + $), sin (Q + $), 0) 1 (2.4 

(where # is the angle between the free surfaccsnd the wave 2,. and $ is the angle between 

the free surface and the wave x,), we solve the system of equations (2.1) to (2.3) forojt) 

at the ooint M under the conditions that 
e, 2a ?5 -_== -- ( ) sin 3 

Cl a- P =a 

rI#) = - &,a 
%Q---W$tg’29 

, 5 =ts.tgttg’ 

(23) 

(2.~1 

Following the argument in (31, we may obtain the change in intensity of the wave x 3, 

knowing its type, which is characterized by the state of the mat&al c~t’ tile 11~0 sides of 

% 
As the wave s 

* f 
traverses the zone of plastic deformation between x., and x,, Wwill be 

a plastic wave if c”‘I _ > 1. and will be a relaxation wave if I(,) < 1. Calculating thafuten- 

sity of the tangentra stresses I = Lx str s,) behind the surface 2,. we obtain a condition 

for the determination of the wave type 

where wfac is the intensity of the wave surface I$ aa t -t m. 

An analysis of relations (2.7) shows that ford, a little differin; fro:81 zero and for o&+00 

finite, I < 1, i.e., the reflected irrotational wave x3 is a relaxation wave. However for #, < 

<sbM,. where 4, and 4 9 are obtained from the condition I = 1, ): 3 may become a plaatrc 

wave. 
At the point M;(t) bchiud the wave surface, the material undergoes elastic stress to the 

left of the point M,(l) and plastic to the right. Since the in- 
tensity ,j(t) of the wave surface 2, changes continuously 
along X , the point M, may be the source of a weak distur 
baucc w !I* id according Huyghens’ principle will propagate in 
the form of an axieymmetrfc wave surface H, on which the 

third derivatives of o,, sad trr will be discontinuous, so that 

the surface will separate zones of elastic and plastic behar 

ior behind 2, (Fig. 2) . 
For 42 < o5 < Wn the reflected irrotational wave x agsia 

becomes a relaxation wave and at the point M 

x,, the same phenomcnsn occurs as doea at Mf. 

(4~ JS) on 

The dependence F = I (03_/os) 2 is given in Fig. 3 for 

different values of Poisson’s ratio (I= 0, 0.1, . . . . 0.5. Frum 

Fig. 2 
the figure it follows that (I= 0.3 to 0.5 for (6,, < # < # 14 
where r# 

at finite ~JJo~~ > 1 is always reflect:8 
* 20°andd, = 70°; a spherical reflected wave 
by a plastic%avs. For 0 < 4 < q5xo and +20 < q$ < 

< n/2 the reflected wave surface x, at ihe iustaut of reflection is a relaxatfon wave. 

[31 

The intensity of the relaxation wave 8, varfes durfng its propagation according to Eq. 
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e=i---r 
I f= If@ - 41 cos ‘p f4 

The time tt of traversal of the wave )3, of the zone 

of plastic deformation between s 

by 
1 

and xZ is determined 

I 
tm= - eos ‘p @GcpQ%k) (2.9) 

4- ez 

tr”=2(2eoscp-e) =&+e$F+... 

lntsgrating relations (2.8) under conditions (2.9), we obtain 

The constant of integration C, is found from the condition t = tto, o’,” = - 50~. It 

should be noted that for 4 = )(i arc sin @3 the intensity of the wave x:3 changes according 

to the law of propagation of elastic waves, if ?4 arc sin m3 < (Is. At the instant t = tZo the 

reflected irrotational wave ): 3 enters the zone of elastic stress behind the surface 2,. From 
the condition of dynamic compatibility (2.1) at the intersection of the wave fronts zZ and xS 
it follows that their intersection is regular, i.e. the intersecting wave3 do not interact. 

We study the character of the wave xS as it enters the elastic zone. From the condition 

of dynamic compatibility (2.1) we calculate 1 behind xc, for t = t20. 

where 

(2.11) 

(2.22) 

From relations (2.11) and (2.12) it follows that for # = 0, 4% I the reflected irrotational 
wave 2, enters the elastic zone as a plastic stress wave with intensity or:*) ft .J and 

propagates further according to the law (2.8). 
In the firection q4t < # < QIZ, the reflected wave 2, is a plastic wave and dies out for 

small 03(t) according to the law f3] 

s .v f@Vjf3f f; (ys _ &,$! 3)) (3] _ a3) ii i (2.13) 

“ij ${j = ?/3 (Cl - 03)’ PI0 a: f d ho) 

Here tle increases as fb + n/2 and the expansion of t20 in powers of 8 diverges. 

On entering the elastic zone behiud the surface )3, the relaxation wave f’3 may be a 
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1. 

2. 

3. 

4. 

5 . . 

Fig. 4 

plastic stress wave (fp2 -< C$ ,( o!rJ) or an elastic wave (& < 

d < r/2), depending on the sign of the inequality O’J’) (rzo) 

io 
TK’pointMI on the wave surface zF_J is a point of trans- 

ition from plastic deformation behind xs to elastic behind 
Z$, at the instant of intersection of the wave surfaces 3 
ar?d x and is a source of weak disturbance, which will ’ 
propaiate in the form of a toroidal wave surface ;e, on 
which the third derivatives of a,, and v, may be drscontin- 
uous, so that behind x3 in the region Mu.U2 the medium is 

plastically deformed, and in the region M,M, elastically 

(Fig. 4). 
Thus the reflected irrotational wave x3 will propagnte 

in the zone behind Yz as a stress wave for 0 _< q5 5 Q, ao 
cording to the law (2.8) and as an elastic wave for 43 < r& < 

< n/2. 
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